Uptake and intracytoplasmic storage of pigmented particles by human CD34+ stromal cells/telocytes: endocytic property of telocytes
نویسندگان
چکیده
We studied the phagocytic-like capacity of human CD34+ stromal cells/telocytes (TCs). For this, we examined segments of the colon after injection of India ink to help surgeons localize lesions identified at endoscopy. Our results demonstrate that CD34+ TCs have endocytic properties (phagocytic-like TCs: phTCs), with the capacity to uptake and store India ink particles. phTCs conserve the characteristics of TCs (long, thin, bipolar or multipolar, moniliform cytoplasmic processes/telopodes, with linear distribution of the pigment) and maintain their typical distribution. Likewise, they are easily distinguished from pigment-loaded macrophages (CD68+ macrophages, with oval morphology and coarse granules of pigment clustered in their cytoplasm). A few c-kit/CD117+ interstitial cells of Cajal also incorporate pigment and may conserve the phagocytic-like property of their probable TC precursors. CD34+ stromal cells in other locations (skin and periodontal tissues) also have the phagocytic-like capacity to uptake and store pigments (hemosiderin, some components of dental amalgam and melanin). This suggests a function of TCs in general, which may be related to the transfer of macromolecules in these cells. Our ultrastructural observation of melanin-storing stromal cells with characteristics of TCs (telopodes with dichotomous branching pattern) favours this possibility. In conclusion, intestinal TCs have a phagocytic-like property, a function that may be generalized to TCs in other locations. This function (the ability to internalize small particles), together with the capacity of these cells to release extracellular vesicles with macromolecules, could close the cellular bidirectional cooperative circle of informative exchange and intercellular interactions.
منابع مشابه
Evidence for progressive reduction and loss of telocytes in the dermal cellular network of systemic sclerosis
Telocytes, a peculiar type of stromal cells, have been recently identified in a variety of tissues and organs, including human skin. Systemic sclerosis (SSc, scleroderma) is a complex connective tissue disease characterized by fibrosis of the skin and internal organs. We presently investigated telocyte distribution and features in the skin of SSc patients compared with normal skin. By an integr...
متن کاملTelocytes as supporting cells for myocardial tissue organization in developing and adult heart
Recent evidence indicates that the adult heart contains sub-epicardial cardiogenic niches where cardiac stem cells and stromal supporting cells reside together. Such stromal cells include a special population, previously identified as interstitial Cajal-like cells and recently termed telocytes because of their long, slender processes (telopodes) embracing the myocardial precursors. Specific str...
متن کاملA loss of telocytes accompanies fibrosis of multiple organs in systemic sclerosis
Systemic sclerosis (SSc) is a complex connective tissue disease characterized by fibrosis of the skin and various internal organs. In SSc, telocytes, a peculiar type of stromal (interstitial) cells, display severe ultrastructural damages and are progressively lost from the clinically affected skin. The aim of the present work was to investigate the presence and distribution of telocytes in the ...
متن کاملTelocytes play a key role in prostate tissue organisation during the gland morphogenesis
Telocytes are CD34-positive interstitial cells, known to exert several functions, one of which is a role in tissue organisation, previously demonstrated by telocytes in the myocardium. The existence of telocytes in the prostate has recently been reported, however, there is a lack of information regarding the function of these cells in prostate tissue, and information regarding the possible role...
متن کاملIsolation, culture, purification and ultrastructural investigation of cardiac telocytes
Telocytes (TCs), a novel type of stromal cells, are crucial to cardiac renovation and regeneration. To dissect the pathophysiological effects of cardiac TCs in heart disease, it is essential to develop an effective method to isolate, culture, purify and characterize these cells. In the present study, cardiac TCs were isolated from the hearts of rats by enzymatic digestion. Histology and CD34/PD...
متن کامل